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Error Analysis for Direct Linear Integral 
Equation Methods* 

By James L. Phillips 

Abstract. An error analysis of projection methods for solving linear integral equations of 
the second kind is presented. The relationships between several direct methods for solving 
integral equations are examined. It is shown that the error analysis given is applicable to 
other methods, including a modified Nystrom method and certain degenerate kernel 
methods. 

1. Introduction. Consider a linear integral equation of the second kind, 
b 

(11) Xx(s) - k(s, t)x(t) dt = y(s), a < s < b, 

or in operator form 

(1.2) (XI - K)x = y. 

The equation is assumed to be in the Banach space C[a, b] of continuous functions 
on [a, b] normed with the sup norm. We further assume K: C[a, b] -* C[a, b] is a 
compact operator and that X 5z? 0 is not an eigenvalue of K. Then the equation has 
a unique solution x*(s) for any given y E C[a, b]. 

When a projection method is used to find an approximate solution to the above 
equation, (1.2) is replaced by 

(1.3) (XI -Pn K)x. = PaY 

Here Pn is a projection (a linear, idempotent) operator from C[a, b] onto a finite- 
dimensional subspace Sn of C[a, b]. Let M denote a finite-dimensional subspace of 
the space of continuous linear functionals on C[a, b], and set 

Ml = {If e C[a, b]: i(1) = O for each /i M}. 

A projection Pn with range Sn and kernel ML is determined if and only if Sn Gn M1 = 

{O}. If {i/} 
n is a basis of M and {yi }n is a basis of Sn such that 

(1.4) Ai(yi) = ii, i, ji ,** n, 

Pn is defined by 

(1.5) (Pnf)(S) = A Hu(f)y,(s), f C C[a, b]. 
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When a solution xn of (1.3) exists, it can be found by choosing a basis { I } of M and 
a basis { ui } of Sn. Then 

(1.6) x'(S) = ciui(s) 
is determined by solving the linear system 

(1.7) A [Xti(u) - Ai(Ku)]c y = Hi(Y), i = 1, ., n. 

for }ci} 
Projection methods are examined as a special case of more general approximation 

methods in [9]. A further analysis with numerical examples is given in [13]. See 
also [8]. In the next section, we extend the analysis of [13] to include the error due to 
the use of quadrature in (1.7). A method for constructing quadrature rules for use 
with projection methods and two examples are given in Section 3. A general class 
of finite-rank operator methods which includes Nystrom and degenerate kernel 
methods is examined in Section 4, and the analysis of Section 2 is shown to apply 
to these methods. 

2. Error Analysis of Projection Methods. The analysis presented here is moti- 
vated by two particular projection methods, collocation and Galerkin's method. 
The method of collocation is based on projection by interpolation. Thus, the bui in 
(1.5) are given by 

(2.1) Ai(f) = f(ti), ti E [a, b], 

and the system (1.7) becomes 

(2.2) Z [Xuj(t)-f k(ti, t)u(t) dtjci = y(ti), i = i, * . -, n. 

Orthogonal or Fourier projection is used in Galerkin's method. If the {ui} satisfy 

rb 

(2.3) f w(t)u,(t)uj(t) dt = bij 

for some w(t) > 0, the functionals in (1.5) are given by 

rb 

(2.4) Ai(f) = f w(t)ui(t)f(t) dt. 

In this case, (1.7) becomes 

(2.5) E [raxij - f w(s)ui(s) fb k(s, t)ui(t) dt ds]ci 

rb 

- fb w(s)ui(s)y(s) ds, i 1, * , n. 

When the integrals in (2.2) or the inner integrals in (2.5) are replaced by a quad- 
rature rule, the approximating equation being solved is not (1.3), but an equation 
of the form 

(2.6) (XI - Pn Km)xnm = PnY. 
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Suppose { Pn } and {Km } are sequences of operators such that 

(2.7) 1K- KmII 0 as m co 

and 

(2.8) IIK- P.KI| 0 as n oa. 

A technique for constructing operators which satisfy (2.7) is discussed in the next 
section. Sufficient conditions on K and Pn for (2.8) are given in [13]. 

THEOREM 2.1. Conditions (2.7) and (2.8) imply 

(2.9) lim lim IlK - Pn Km II 0. 
nova)o m--+c 

Moreover, if I II Pn } is uniformly bounded, 

(2.10) lim IlK - PnKmII - 0. 
n, m 

Hence, for all n and m such that 

(2.11) IlK - PnKmII II(GI - K)1 1 < 1, 

a unique solution Xnm of (2.6) exists. Furthermore, 

(2.12) llix - XnmIl _ II(XI - PnKm)YIlI 
I XI (1 + IIPnII) dist (x*; Sn) + IIPnII JI(K- Km)x*II}, 

where dist (x*; Sn) = inf,-Sn IIx* - |11 
Proof. For each n, (2.7) implies 

IiM IIPnKm - PnKII < IIPnII IiM IlK - KmIl = 0. 

This implies that, for each n, limm. II K - PnKm II = II K - PnK I . The result (2.9) 
follows by letting n -> o and employing (2.8). The stronger result (2.10) follows 
immediately from the relation IK- PnKmI I I K - PnKI I + IIPnI I K - Km II using 
(2.7), (2.8), and the uniform boundedness of JI PnII}. When (2.11) holds, Banach's 
theorem [9, p. 172] implies (XI - PnKm)-Y exists. The bound (2.12) follows from the 
identity 

(XI - PnKm)(X* - Xnm) = X(x* - Pnx*) + Pn(K - Km)x*. 

This completes the proof. 
When Galerkin's method is applied, approximations are generally also involved 

in evaluating the integrals with respect to s in (2.5). Let IQk,} be a sequence of quad- 
rature rules such that, for each f C C[a, b], 

rb 

(2.13) Qk(f) f w(t)f(t) dt as k -> o. 

Define an approximation Pnk to the Fourier projection operator Pn by 

(2.14) (Pnkf)(s) = E Qk(UiJ)U,(s). 
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Then (2.13) implies 

(2.15) Pnkf >Pnf ask-> co, for each f E C[a, b]. 

When approximate operators Km and Pnk are used, (1.3) is replaced by 

(2.16) (XI - Pnk Km)X = PnkY . 

THEOREM 2.2. Conditions (2.7), (2.8) and (2.15) imply 

(2.17) rim rim IK - Pnk KmII = ? 
n--oo k, m-co 

For all n, k, m such that 

(2.18) IIK- PnkKmII II(GI - K)111 < 1, 

a unique solution x of (2.16) exists, and 

IIx* - X| <-I II(XI - PnkKm)1l 1 

(2.19) * {IXI(1 + IIPnII) dist(x*; Sn) + IIPnkIII I(K - Km)x*lI 

+ |Xi II(Pn - Pnk)X* I|. 

Proof. We first show that, for each n, 

(2.20) rim IIK- PnkKmII = IlK - PnKII. 
km-oo 

Let n be given and fixed. To establish (2.20), it is sufficient to show that 

rim IIPnK PnkKmII = 0. 
k, m-co 

The compactness of K and (2.15) imply 

(2.21) IIPlnkK- PnKI 0 as k-> o. 

(2.15) also implies { Pnk } is uniformly bounded over k. That is, there exists a number 
Mn depending only on n, such that I IPnkj < Mn for all k. Now 

IIPnK - PnkKmII - IIPnK - PnkKit + IIPnkK- PnkKmII 

- IIPnK - PnkKit + Mn IlK- KmII. 

The result (2.20) now follows using (2.21) and (2.7). Finally, if we take the limit as 
n -* o of each side of (2.20) and employ (2.8), we obtain (2.17). 

The bound (2.19) is derived from the identity 

(XI - PnkKm)(X* - x) = X (x* - PnX*) + Pnk(K - Km)X* + X(Pn - Pnk)X. 

Although (2.12) and (2.19) do not generally provide computable error bounds, 
they are useful in practice for obtaining order of convergence estimates. Examples 
given in the next section illustrate such usage. 
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It is interesting to note that the right-hand side y of (1.1) appears explicitly in 
neither (2.12) nor (2.19). It is the smoothness of x* = X- (y + Kx*), not of y or Kx* 
individually, which determines the rate of convergence of the solution of (2.6) or (2.16). 

3. Quadrature Rules and Examples. It is not necessary that (2.7) hold in order 
to successfully use a projection method. However, useful operator approximations 
{Km } which converge uniformly to K can be easily constructed in many cases. 

The approximations given here are similar to those suggested in [1]. In [1], integrals 
of the form fb k(s, t)u(t) dt are approximated by writing k8(t) = k(s, t) in the form 
k8(t) = r8(t)h8(t) where r8(t) is smooth and h8(t) can be integrated analytically. The 
function r8(t)u(t) is then replaced by an approximation g8(t) which is of simple form, 
e.g. a piecewise polynomial. If h8(t) has been chosen properly, the product h8(t)g8(t) 
can be integrated analytically. 

The functions u,(t) used in (1.7) are generally chosen to have simple form. Hence, 
we modify the technique above so that only r8, not roux, is replaced by an approxi- 
mation. More generally, we have the following: 

THEOREM 3.1. Suppose 
q 

(3.1) k(s, t) = i rp(s, t)hp(s, t) 
p=1 

where, for each p, 

(3.2) rp C C([a, b] X [a, b]), 
b 

(3.3) VP = SUP ] Ihp(s, t)I dt < X, 
a s5b a 

and 
b 

(3.4) SUP J Ihp(s, r) - hp(t, r)I dr -> 0 as a 0. 
Is-tI?5 a 

Let { Vm} be a sequence of bounded linear maps from C[a, b] onto the space of bounded 
integrable functions on [a, b]. For each m, define Km by 

b 

(3.5) (Kmf)(s) =Vd .[rp(s, t)]hp(s, t)f(t) dt, f E C[a, b], 

where it is assumed Vm is applied to rp as a function of t. Then 

(3.6) Km C[a, b] - C[a, b] 

and 

(3.7) IlK - Km a. E rp 
p 

where 

(3.8) am = max sup Irp(s, t)- Vm [rp(s, t)] I 
p st, 

Hence, if a,, - 0 as m -> co, then I K - Km l 0. 
Proof. Let: = maxp sups. r(s, t) . Fix m, and let g 6 C[a, b], and s, t E [a, b]. 

Then 
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rb 

I(Kmg)(s) - (Kmg)(t)I < I E f { l V.[rp(s, r)][hp(s, r) - hp(t, r)]I 

+ I Vm[rp(S, r) - rp(t, r)]hp(t, r)I} dr 

< IlgII II VmII {13 E fb Ihp(s, r) - hp(t, r)I dr 

+ max sup Irp(s, r) - rp(t, r) I Z r7p} 
p T p 

Thus, (3.6) follows from (3.2)-(3.4). To obtain (3.7), note that, for each g 6 C[a, b], 

b 

IIKg - KmgII = sup E E [rp(s, t) - V.(rp(s, t))]hp(s, t)g(t) dt < uIgII am E p 
s a p p 

This completes the proof. 
Collocation Example. Suppose (1.1) is solved approximately by collocation using 

a cubic spline subspace. Let { Irn} be a sequence of partitions of [a, b], 7rx: a = t0n < 
t1n < * < tnn = b such that l7r.1 = maxi (tin - t1,-) -*0 as n -* c. For each n, 
let Sn denote the subspace of cubic splines with knots on rn, and let Pn be the inter- 
polation projection onto Sn with interpolating points on rn and at 1Sn = (t1n + t0n)/2, 
In = (t.n + t.- ,,)/2. Assume the partitions rn have uniformly bounded mesh ratios 

qn = 7rnl/mini (tin - ti-1,n). Then the projections Pn converge pointwise to the 
identity [3] and are thus uniformly bounded. 

Suppose the kernel function k(s, t) can be expressed in the form (3.1) where, 
for each p, r. 6 C 2"[a, b] as a function of t, and h. satisfies (3.3) and (3.4). Let 
Vm denote the interpolation projection onto the space of linear splines (broken lines) 
with knots on rm. Then [4] am = 0(I1rn2), so (3.7) implies IlK - Kmll = O(Hrr|2). 

Moreover, (2.8) holds as can be seen by applying Theorem 4.1 of [13]. Theorem 2.1 
now applies. Thus, a unique solution of (2.6) exists for all sufficiently large m and n. 
If x* 6 CCk)[a, b], 0 < k < 4, then [4] dist (x*; Sn) = O( IrnIk), so from (2.12), we 

obtain 

llx* - Xnm ll = O(l7rn1k) + O(17rm12). 

Galerkin Example. Let Pn denote the Fourier-Chebyshev projection operator 
onto the space Pn of polynomials of degree not greater than n. For each f El C[a, b], 

Pnf is given by 
n 

(Pnf)(s) = E' IQ(f)Tj(s), 
(3.9) i=o 

2 f 
D() = - (1 - t2)-1"2Ti(t)f(t) dt, 

7r 

where Ti(s) denotes the Chebyshev polynomial of degree j, and A' denotes the first 

term in the summation is to be halved. Suppose (a, b) = (- 1, 1) and that (1.1) is to 

be solved approximately using Galerkin's method with the projection Pn in (3.9). 

Using the substitution t = cos 0, the integrals I?(f) can be expressed as 

(3.10) is(f) = - 
2 

cos(jO)f(cos 0) dO. 
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If each I, is approximated using the trapezoidal rule with spacing h = 7r/k, k > n, 
(3.10) is replaced by 

(3.1 1) ji(f) = ka COS(I m)f(COs Gm), Om = mr/k, km=O 
where A" denotes the first and last summands are to be halved. The I>(f) are [7, p. 31] 
coefficients in the discrete least squares Chebyshev expansion 

n 

(3.12) [Pnkf ](S) = E' 1i(f)T1(s). 
i=O 

Thus, Pnk is itself a projection operator onto P,. As a consequence, use of the trape- 
zoidal rule to evaluate the integrals involving w(s) = (1 -_s2)-"/2 in (2.5) implies 
that a discrete Galerkin method is actually being used to solve (1.1) approximately. 
Hence, (2.12) can be used instead of (2.19) to analyze convergence. 

When k = n, the projection operator Pnk becomes interpolation onto Pn at the 
points cos Om. In this case [6], II I 11 = O(ln n). Suppose x* () exists and is bounded. 
Then by Jackson's Theorem [11], dist (x*; Pn) = O(n-4). Thus, (2.12) becomes 

I x* - XnmII = O(ln n)[O(n 4) + O(II(K - Km)x*II)]. 

Instead of (3.11), suppose the Gauss-Chebyshev quadrature formula 
1 k 

(3.13) (1 - t2Y"2g(t) dt = k g(cos t) + E(g), = (i- )/k, 
-1 k 

2 

with k > n + 1 is used to approximate the integrals in (3.9). The resulting approxi- 
mation to Pn is given by 

n 2 k 

(3.14) (Pnkf)(s) = At Ii(f)T1(s), Ii(f) = - E cOs(Aim)f(cos tm) 
i=0 k m=1 

Pnk defines another discrete least squares Chebyshev expansion [7, p. 32]. Thus we 
are led to a second discrete Galerkin method. Rather than use (2.12) to analyze this 
method, we illustrate the use of (2.19). 

For any function f, the approximation Pnkf differs from Pnf by no more than 

2 n ~~~~~2 
(3.15) IIPnf - PnkfII I< - Z' IE(Tif)I IITiII = - Z' IE(Tif)I. 

7r i=o 7r i 

Again assume x* 4) exists and is bounded. Then for each, dist (x* T1; Pn+ i) = 0(n-4), 

so [5, Section 4.8] IE(x*T1)l = O(n-4). Thus, (3.15) implies Pnx *- PnkX*II = O(n-3). 

A crude bound on I IPnkl I is given by I Pnkl I I Z 111 I T, II = 2n + 1, while [1 1] 
I IPnJ I = O(ln n). Thus, (2.19) implies I1x*- = O(n-3) + O(n 11(K - Km)X* I1). 

4. Finite Rank Operator Methods. Suppose the solution x* of (1.2) is approx- 
imated by the solution &n of an equation 

(4.1) (X I - Kn)in = Y, 

where Kn is an operator of finite rank. We refer to any such approximation method 
as a finite rank operator method. In this section, we will show the relation between 
finite rank operator methods and projection methods. We then apply the analysis 
of Section 2 to certain of these methods. 
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Any bounded linear operator K& of finite rank defined on C[a, b] can be expressed 
in the form 

(4.2) (Knf)(s) = E (i(s), 

where the 4i are bounded linear functionals on C[a, b] and { ut } spans the range of Kn. 
If the approximating equation (4.1) has a unique solution Q(s), the solution must 
satisfy 

(4.3) Xtn(S) - ZCiui(s) = y(s), ci = iU(3xn) 

Hence, -n(s) has the form 

(4.4) MS(s) = X'(Y(s) + z ciui(s)). 

The c; satisfy the linear system 

(4.5) Xci- Zciti(ui) = ,u,(y), i 1, ,n 

obtained by applying 4i to each side of (4.3). In fact, &n given by (4.4) is a solution 
of (4.1) if and only if the ci satisfy (4.5). Thus, (4.1) has a unique solution if and only 
if (4.5) does. The solvability of (4.5) does not depend on whether or not { 1, } or {ui I 
is linearly independent. 

Now suppose Pn is a projection operator defined by (1.5) and Kn is the operator 
defined by (4.2), where the functionals 4i are identical with those in (1.5). If the 
operator Kn = Km defined in (4.2) is used in (2.6), the solution Xnn of (2.6) is related 
to the solution of (4.1) by 

(4.6) Xnn = PninX 

To see this, let {ye } be a basis of the range of Pn satisfying (1.4). In solving (2.6), 
the coefficients di in the expansion Xnn(S) = d diyi(s) are determined from the 
linear system 

(4.7) E[Xbi - A,(Knyi)]di = Ai(y), i = 1, .. n. 

But (4.2) and (1.4) imply Knyi = Ad 4i(yi)u. = ui. Hence, the system (4.7) is identical 
with (4.5). Since c; = I?i(x) and di = ,ui(Xnn), this implies Ai(xn) = Au(xnn), I = 

1, * * , n. Hence, Pn~n = PnXnn. But PnXnn = Xnn, so (4.6) must hold. 
The Nystr6m method and the method of collocation illustrate the relation (4.6). 

The Nystrdm method ([12], [2]) is derived by replacing the integral in (1.1) by a 
quadrature rule 

rb n 

(4.8) I g(t) dt - E wig(ti). 

The Nystrdm method is thus a finite rank operator method where the functionals 
pi in (4.2) are given by point evaluation at t, and u,(s) = wtk(s, ti). More generally [1], 
if k(s, t) is expressed in the form (3.1), a product quadrature rule 

b n 

(49 A~~gt dt w SigS~ . 
v.t.._) 
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might be used rather than (4.8). In this case the ut(s) have the form ut(s) = 

, wi, (s)r,(s, ti). 
Suppose the Nystrdm method is applied to (1.1), and an interpolate 9= P'J" of 

the resulting approximate solution ti. is formed such that xn(t) = i = 1, .. , n. 
Then (4.6) implies that xn is the same function found by solving (1.1) approximately 
using collocation at the points { t1 I with the integrals evaluated using the same quad- 
rature rule (4.8) or (4.9) used in determining x. This relation between the Nystrom 
method and collocation has been noted before ([9, Section XIV. 4], [14]). The work 
in Section 2 provides a means of analyzing the error in the approximate solution found. 

A second well-known finite rank operator method is the degenerate kernel method. 
In this method [10], k(s, t) is replaced by a degenerate kernel 

n 
(4.10) kj(s, t) = E (sA . 

t =1 

The functionals pti in (4.2) are given by 

rb 

(4.11) Ai(f) = f f(t)3 (t) dt, 

while the ui are given by ut(s) = ai(s), for each i. 
One means of obtaining a kernel (4.10) which approximates k(s, t) is to use 

kn(s, t) = Pnk(s, t), where Pn is a projection operator applied to k(s, t) as a function 
of s. The operator Kn in (4.1) now has the form 

(4.12) Kn = PnK. 

The solution xi of (4.1) satisfies 

(4.13) x = X'(y + zn), Zn = PnKin, 

where zn can be found as the solution of 

(4.14) (X I - Pn K)zn = Pn Ky 

Thus, application of the degenerate kernel method with an approximation operator 
of the form (4.12) is equivalent to solving the regularized equation [9, p. 552] 

(4.15) (XI - K)z = Ky, 

using the method of projections, then defining &n by (4.13). As we see below, this 
equivalence permits us to study the error in x, using the analysis of Section 2. 

Note that the solution x* of (1.2) satisfies (XI - K)Kx* = Ky. Comparing this 
with (4.15), we see that the solution z* of (4.15) satisfies z* = Kx*. Moreover, 
(4.13) and (4.12) imply zn = Kntn These relations, together with (1.2), (4.1) yield 

(4.16) Z -Zn = Kx* -Kn3n (Xx* - ) - (Xn - y) = X(x* - kn). 

Using (4.14) then (4.15), we have 

(XI - PnK)(z* - Zn) = Xz* - PnKz* - PnKy 

= Xz* - PA(Xz* - Ky) - Pn Ky = (I -PZ 

so (4.16) implies (XI - PnK)(x* - n) = (I - Pn)z*. Hence, if Sn = range of Pn, 
the error in tn is bounded by 
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(4.17) I1x* - xnII ? II(XI - P.K)1II I (1 + I IP. |I) dist(z*; Sn). 

By comparison, we note that if the same projection operator is used in (1.3), the 
resulting approximation xn, satisfies 

(XI - Pn K)(x* - xn) = Xx* - Pn Kx* - Pny 

= Xx* - PA(Xx* - A - P.y = X(I - P.)x*, 

so 

(4.18) 1ix* - xell < II(XI - PK)' II 1X1 (1 + IIP.II) dist(x*; Sn). 

Comparing (4.17) and (4.18), one would expect &c. to be a better approximation to x* 
than x, whenever z* = x*- y can be better approximated than x* by functions 
in Sn,. 

In practice, approximate operators Km and P,1 might be used in place of K and Pn, 
when solving (4.14) numerically. If, instead of (4.14), an approximate equation 

(4.19) (XI - Pnk Km)2 = Pk Ky 

is solved, the situation is analogous to (2.16) and an error bound for z* - z can 
be found using (2.19). Generally, however, one would probably also replace K on 
the right-hand side of (4.19) by the approximate operator Km. Thus, the equations 

(XI - PnkKm)O = PnkKmY, x = X-'(y + i) 

would be solved to obtain an approximation x to x*. Then 

(XI - Pnk Km)(X* - x) = (z - P.z*) + (P. - Pfk)Z* + Pnk(K - Km)X*, 

so analogous to (2.19), we have 

I|x* - x|| < II(I - PnkKm)'II 

{(1 + IIPnI dist(z*; S.) + IIPnkII II(K - Km)X*II + II(P. - Pnk)Z*||l- 
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